		We	lding P	arameters				NT AS OF 9/2024
Product Line & Material	Pipe Size	Initial Melt Pressure	Bead Height	Melt Pressure	Heatsoak Time	Changeover Time	Welding Pressure	Cooling Time
Air-Pro® (PE)	1/2" (20mm) SDR7	6.7 lbs	0.5 mm	Almost Zero	30 seconds	5 seconds	6.7 lbs	5.0 min
Air-Pro® (PE)	3/4" (25mm) SDR7	9.0 lbs	0.5 mm	Almost Zero	35 seconds	5 seconds	9.0 lbs	5.0 min
Air-Pro® (PE)	1" (32mm) SDR7	18.0 lbs	0.5 mm	Almost Zero	44 seconds	5 seconds	18.0 lbs	5.0 min
Air-Pro® (PE)	1-1/4" (40mm) SDR7	20.2 lbs	1 mm	Almost Zero	55 seconds	5 seconds	20.2 lbs	6.0 min
Air-Pro® (PE)	1-1/2" (50mm) SDR7	33.7 lbs	1 mm	Almost Zero	69 seconds	6 seconds	33.7 lbs	7.4 min
Air-Pro® (PE)	2" (63mm) SDR7	51.7 lbs	1.5 mm	Almost Zero	86 seconds	7 seconds	51.7 lbs	8.9 min
Air-Pro® (PE)	3" (90mm) SDR7	103.4 lbs	2 mm	Almost Zero	123 seconds	8 seconds	103.4 lbs	12.3 min
Air-Pro® (PE)	4" (110mm) SDR7	152.9 lbs	2 mm	Almost Zero	151 seconds	9 seconds	152.9 lbs	14.8 min
Chem Proline® (PE)	1/2" (20mm) SDR11	4.5 lbs	0.5 mm	Almost Zero	20 seconds	5 seconds	4.5 lbs	5.0 min
Chem Proline® (PE)	3/4" (25mm) SDR11	4.5 lbs	0.5 mm	Almost Zero	23 seconds	5 seconds	4.5 lbs	5.0 min
Chem Proline® (PE)	1" (32mm) SDR11	13.5 lbs	0.5 mm	Almost Zero	30 seconds	5 seconds	13.5 lbs	5.0 min
Chem Proline® (PE)	1-1/2" (50mm) SDR11	22.5 lbs	1 mm	Almost Zero	46 seconds	5 seconds	22.5 lbs	5.1 min
Chem Proline® (PE)	2" (63mm) SDR11	36.0 lbs	1 mm	Almost Zero	58 seconds	6 seconds	36.0 lbs	6.3 min

Please visit the Asahi Weld App

at www.asahi-america.com for

up to date weld parameters

Welding Temperatures

PP: 393°F - 410°F (200°C - 210°C)
PE: 420°F - 446°F (215°C - 230°C)
PVDF: 436°F - 446°F (225°C - 230°C)
ECTFE: 527°F - 536°F (275°C - 280°C)

- the joint connection was created under workshop conditions and
- the removal of the part from the welding machine and its temporary storage until the complete cooling time according to the Cooling Time column causes negligible loading of the joint

		Welding Parameters								
Product Line & Material	Pipe Size	Initial Melt Pressure	Bead Height	Melt Pressure	Heatsoak Time	Changeover Time	Welding Pressure	Cooling Time		
Chem Proline® (PE)	3" (90mm) SDR11	71.9 lbs	1.5 mm	Almost Zero	82 seconds	6 seconds	71.9 lbs	8.6 min		
Chem Proline® (PE)	4" (110mm) SDR11	107.9 lbs	1.5 mm	Almost Zero	100 seconds	7 seconds	107.9 lbs	10.2 min		
Chem Proline® (PE)	1/2" (20mm) SDR7	6.7 lbs	0.5 mm	Almost Zero	30 seconds	5 seconds	6.7 lbs	5.0 min		
Chem Proline® (PE)	3/4" (25mm) SDR7	9.0 lbs	0.5 mm	Almost Zero	35 seconds	5 seconds	9.0 lbs	5.0 min		
Proline® PRO150 (PP)	1/2" (20mm) SDR11	4.5 lbs	0.5 mm	Almost Zero	24 seconds	5 seconds	4.5 lbs	5.0 min		
Proline® PRO150 (PP)	3/4" (25mm) SDR11	4.5 lbs	0.5 mm	Almost Zero	27 seconds	5 seconds	4.5 lbs	5.0 min		
Proline® PRO150 (PP)	1" (32mm) SDR11	6.7 lbs	0.5 mm	Almost Zero	34 seconds	5 seconds	6.7 lbs	5.0 min		
Proline® PRO150 (PP)	1-1/4" (40mm) SDR11	11.2 lbs	0.5 mm	Almost Zero	44 seconds	5 seconds	11.2 lbs	5.0 min		
Proline® PRO150 (PP)	1-1/2" (50mm) SDR11	15.7 lbs	0.5 mm	Almost Zero	54 seconds	5 seconds	15.7 lbs	5.1 min		
Proline® PRO150 (PP)	2" (63mm) SDR11	24.7 lbs	0.5 mm	Almost Zero	68 seconds	6 seconds	24.7 lbs	6.3 min		
Proline® PRO150 (PP)	2-1/2" (75mm) SDR11	33.7 lbs	0.5 mm	Almost Zero	79 seconds	6 seconds	33.7 lbs	7.3 min		
Proline® PRO150 (PP)	3" (90mm) SDR11	49.5 lbs	1 mm	Almost Zero	94 seconds	6 seconds	49.5 lbs	8.6 min		
Proline® PRO150 (PP)	4" (110mm) SDR11	71.9 lbs	1 mm	Almost Zero	113 seconds	7 seconds	71.9 lbs	10.2 min		

Please visit the Asahi Weld App

at www.asahi-america.com for

up to date weld parameters

Welding Temperatures

PP: 393°F - 410°F (200°C - 210°C)
PE: 420°F - 446°F (215°C - 230°C)
PVDF: 436°F - 446°F (225°C - 230°C)
ECTFE: 527°F - 536°F (275°C - 280°C)

- the joint connection was created under workshop conditions and
- the removal of the part from the welding machine and its temporary storage until the complete cooling time according to the Cooling Time column causes negligible loading of the joint

		Welding Parameters								
Product Line & Material	Pipe Size	Initial Melt Pressure	Bead Height	Melt Pressure	Heatsoak Time	Changeover Time	Welding Pressure	Cooling Time		
Proline® PRO90 (PP)	1-1/2" (50mm) SDR17.6	9.0 lbs	0.5 mm	Almost Zero	34 seconds	5 seconds	9.0 lbs	5.0 min		
Proline® PRO90 (PP)	2" (63mm) SDR17.6	15.0 lbs	0.5 mm	Almost Zero	42 seconds	5 seconds	15.0 lbs	5.0 min		
Proline® PRO90 (PP)	2-1/2" (75mm) SDR17.6	22.0 lbs	0.5 mm	Almost Zero	51 seconds	5 seconds	22.0 lbs	5.0 min		
Proline® PRO90 (PP)	3" (90mm) SDR17.6	31.0 lbs	0.5 mm	Almost Zero	60 seconds	5 seconds	31.0 lbs	5.4 min		
Proline® PRO90 (PP)	4" (110mm) SDR17.6	46.0 lbs	0.5 mm	Almost Zero	73 seconds	5 seconds	46.0 lbs	6.5 min		
Proline® PRO45 (PP)	3" (90mm) SDR33	18.0 lbs	0.5 mm	Almost Zero	33 seconds	5 seconds	18.0 lbs	5.0 min		
Proline® PRO45 (PP)	4" (110mm) SDR33	27.0 lbs	0.5 mm	Almost Zero	40 seconds	5 seconds	27.0 lbs	5.0 min		
Super Proline® (PVDF)	1/2" (20mm) SDR21	3.0 lbs	0.5 mm	Almost Zero	59 seconds	3 seconds	3.0 lbs	4.5 min		
Super Proline® (PVDF)	3/4" (25mm) SDR21	3.0 lbs	0.5 mm	Almost Zero	59 seconds	3 seconds	3.0 lbs	4.5 min		
Super Proline® (PVDF)	1" (32mm) SDR21	5.0 lbs	0.5 mm	Almost Zero	64 seconds	3 seconds	5.0 lbs	5.0 min		
Super Proline® (PVDF)	1-1/4" (40mm) SDR21	7.0 lbs	0.5 mm	Almost Zero	64 seconds	3 seconds	7.0 lbs	5.0 min		
Super Proline® (PVDF)	1-1/2" (50mm) SDR21	10.0 lbs	0.5 mm	Almost Zero	70 seconds	3 seconds	10.0 lbs	5.5 min		
Super Proline® (PVDF)	2" (63mm) SDR21	13.0 lbs	0.5 mm	Almost Zero	70 seconds	3 seconds	13.0 lbs	5.5 min		

Please visit the Asahi Weld App

at www.asahi-america.com for

up to date weld parameters

Welding Temperatures

PP: 393°F - 410°F (200°C - 210°C) PE: 420°F - 446°F (215°C - 230°C) PVDF: 436°F - 446°F (225°C - 230°C) ECTFE: 527°F - 536°F (275°C - 280°C)

- the joint connection was created under workshop conditions and
- the removal of the part from the welding machine and its temporary storage until the complete cooling time according to the Cooling Time column causes negligible loading of the joint

		Welding Parameters							
Product Line & Material	Pipe Size	Initial Melt Pressure	Bead Height	Melt Pressure	Heatsoak Time	Changeover Time	Welding Pressure	Cooling Time	
Super Proline® (PVDF)	2-1/2" (75mm) SDR21	18.0 lbs	0.5 mm	Almost Zero	76 seconds	3 seconds	18.0 lbs	6.5 min	
Super Proline® (PVDF)	3" (90mm) SDR21	26.0 lbs	0.5 mm	Almost Zero	83 seconds	3 seconds	26.0 lbs	7.0 min	
Super Proline® (PVDF)	4" (110mm) SDR21	38.0 lbs	0.5 mm	Almost Zero	93 seconds	3 seconds	38.0 lbs	8.5 min	
Super Proline® (PVDF)	3" (90mm) SDR33	17.0 lbs	0.5 mm	Almost Zero	68 seconds	3 seconds	17.0 lbs	5.5 min	
Super Proline® (PVDF)	4" (110mm) SDR33	25.0 lbs	0.5 mm	Almost Zero	74 seconds	3 seconds	25.0 lbs	6.0 min	
Ultra Proline® (ECTFE)	1/2" (20mm) SDR21	2.0 lbs	0.5 mm	Almost Zero	12 seconds	4 seconds	2.0 lbs	3.0 min	
Ultra Proline® (ECTFE)	3/4" (25mm) SDR21	3.0 lbs	0.5 mm	Almost Zero	12 seconds	4 seconds	3.0 lbs	3.0 min	
Ultra Proline® (ECTFE)	1" (32mm) SDR21	5.0 lbs	0.5 mm	Almost Zero	19 seconds	4 seconds	5.0 lbs	4.0 min	
Ultra Proline® (ECTFE)	1-1/2" (50mm) SDR21	9.0 lbs	0.5 mm	Almost Zero	25 seconds	4 seconds	9.0 lbs	5.0 min	
Ultra Proline® (ECTFE)	2" (63mm) SDR21	11.0 lbs	0.5 mm	Almost Zero	25 seconds	4 seconds	11.0 lbs	5.0 min	
Ultra Proline® (ECTFE)	3" (90mm) SDR21	22.0 lbs	0.5 mm	Almost Zero	34 seconds	4 seconds	22.0 lbs	6.0 min	
Ultra Proline® (ECTFE)	4" (110mm) SDR21	33.0 lbs	0.5 mm	Almost Zero	40 seconds	4 seconds	33.0 lbs	7.0 min	
Chem Prolok® (PE)	1" X 3" (32mm X 90mm) SDR11X11	85.4 lbs	1.5 mm	Almost Zero	82 seconds	6 seconds	85.4 lbs	8.6 min	

Please visit the Asahi Weld App

at www.asahi-america.com for

up to date weld parameters

Welding Temperatures

PP: 393°F - 410°F (200°C - 210°C) PE: 420°F - 446°F (215°C - 230°C) PVDF: 436°F - 446°F (225°C - 230°C) ECTFE: 527°F - 536°F (275°C - 280°C)

- the joint connection was created under workshop conditions and
- the removal of the part from the welding machine and its temporary storage until the complete cooling time according to the Cooling Time column causes negligible loading of the joint

		Welding Parameters							
Product Line & Material	Pipe Size	Initial Melt Pressure	Bead Height	Melt Pressure	Heatsoak Time	Changeover Time	Welding Pressure	Cooling Time	
Chem Prolok® (PE)	2" X 4" (63mm X 110mm) SDR11X33	76.3 lbs	0.5 mm	Almost Zero	58 seconds	5 seconds	76.3 lbs	6.3 min	
Chem Prolok® (PE)	1" X 4" (32mm X 110mm) SDR11X33	53.8 lbs	0.5 mm	Almost Zero	34 seconds	5 seconds	53.8 lbs	5.0 min	
Duo-Pro® PRO150X150 (PP)	1" X 3" (32mm X 90mm) SDR11X11	56.2 lbs	1 mm	Almost Zero	94 seconds	6 seconds	56.2 lbs	8.6 min	
Duo-Pro® PRO150X150 (PP)	2" X 4" (63mm X 110mm) SDR11X11	96.7 lbs	1 mm	Almost Zero	113 seconds	7 seconds	96.7 lbs	10.2 min	
Duo-Pro® PRO150X150 (PP)	1" X 4" (32mm X 110mm) SDR11X11	78.7 lbs	1 mm	Almost Zero	113 seconds	7 seconds	78.7 lbs	10.2 min	
Duo-Pro® PRO150X45 (PP)	2" X 4" (63mm X 110mm) SDR11X33	33.7 lbs	0.5 mm	Almost Zero	68 seconds	5 seconds	33.7 lbs	5.0 min	
Duo-Pro® PVDFXPVDF (PVDF)	1" X 3" (32mm X 90mm) SDR21X33	22.0 lbs	0.5 mm	Almost Zero	68 seconds	3 seconds	22.0 lbs	5.5 min	
Duo-Pro® PVDFXPVDF (PVDF)	2" X 4" (63mm X 110mm) SDR21X33	38.0 lbs	0.5 mm	Almost Zero	74 seconds	3 seconds	38.0 lbs	6.0 min	
Duo-Pro® PVDFXPVDF (PVDF)	1" X 4" (32mm X 110mm) SDR21X33	30.0 lbs	0.5 mm	Almost Zero	74 seconds	3 seconds	30.0 lbs	6.0 min	
Duo-Pro® Halar®XHalar® (ECTFE)	1" X 3" (32mm X 90mm) SDR21X21	27.0 lbs	0.5 mm	Almost Zero	34 seconds	4 seconds	27.0 lbs	6.0 min	
Duo-Pro® Halar®XHalar® (ECTFE)	1" X 4" (32mm X 110mm) SDR21X21	38.0 lbs	0.5 mm	Almost Zero	40 seconds	4 seconds	38.0 lbs	7.0 min	
Duo-Pro® Halar®XHalar® (ECTFE)	2" X 4" (63mm X 110mm) SDR21X21	44.0 lbs	0.5 mm	Almost Zero	40 seconds	4 seconds	44.0 lbs	7.0 min	
Fluidlok (IPS) (PE)	1" X 3" SDR11X11	79.0 lbs	1.5 mm	Almost Zero	81 seconds	5 seconds	79.0 lbs	16.0 min	

Please visit the Asahi Weld App

at www.asahi-america.com for

up to date weld parameters

Welding Temperatures

PP: 393°F - 410°F (200°C - 210°C) PE: 420°F - 446°F (215°C - 230°C) PVDF: 436°F - 446°F (225°C - 230°C)

ECTFE: 527°F - 536°F (275°C - 280°C)

- the joint connection was created under workshop conditions and
- the removal of the part from the welding machine and its temporary storage until the complete cooling time according to the Cooling Time column causes negligible loading of the joint

		We	lding P	arameters				NT AS OF 0/2024
Product Line & Material	Pipe Size	Initial Melt Pressure	Bead Height	Melt Pressure	Heatsoak Time	Changeover Time	Welding Pressure	Cooling Time
Poly-Flo® PE100RC (PE)	1" X 1-1/2" (32mm X 50mm) SDR11X17	25.0 lbs	0.5 mm	Almost Zero	25 seconds	4 seconds	25.0 lbs	4.0 min
Poly-Flo® PE100RC (PE)	2" X 3" (63mm X 90mm) SDR11X17	65.0 lbs	1 mm	Almost Zero	35 seconds	5 seconds	65.0 lbs	8.0 min
Poly-Flo® PPR (PP)	1" X 1-1/2" (32mm X 50mm) SDR11X17	15.0 lbs	0.5 mm	Almost Zero	45 seconds	4 seconds	15.0 lbs	3.0 min
Poly-Flo® PPR (PP)	2" X 3" (63mm X 90mm) SDR11X17	60.0 lbs	0.5 mm	Almost Zero	80 seconds	6 seconds	60.0 lbs	9.0 min

Please visit the Asahi Weld App

at www.asahi-america.com for

up to date weld parameters

Welding Temperatures

PP: 393°F - 410°F (200°C - 210°C) PE: 420°F - 446°F (215°C - 230°C) PVDF: 436°F - 446°F (225°C - 230°C) ECTFE: 527°F - 536°F (275°C - 280°C)

- the joint connection was created under workshop conditions and
- the removal of the part from the welding machine and its temporary storage until the complete cooling time according to the Cooling Time column causes negligible loading of the joint

		Welding Parameters							
Product Line & Material	Pipe Size	Initial Melt Pressure	Bead Height	Melt Pressure	Heatsoak Time	Changeover Time	Welding Pressure	Cooling Time	

Please visit the Asahi Weld App

at www.asahi-america.com for

up to date weld parameters

Welding Temperatures

PP: 393°F - 410°F (200°C - 210°C) PE: 420°F - 446°F (215°C - 230°C) PVDF: 436°F - 446°F (225°C - 230°C) ECTFE: 527°F - 536°F (275°C - 280°C)

- the joint connection was created under workshop conditions and
- the removal of the part from the welding machine and its temporary storage until the complete cooling time according to the Cooling Time column causes negligible loading of the joint

		Welding Parameters							
Product Line & Material	Pipe Size	Initial Melt Pressure	Bead Height	Melt Pressure	Heatsoak Time	Changeover Time	Welding Pressure	Cooling Time	

Please visit the Asahi Weld App

at www.asahi-america.com for

up to date weld parameters

Welding Temperatures

PP: 393°F - 410°F (200°C - 210°C) PE: 420°F - 446°F (215°C - 230°C) PVDF: 436°F - 446°F (225°C - 230°C) ECTFE: 527°F - 536°F (275°C - 280°C)

- the joint connection was created under workshop conditions and
- the removal of the part from the welding machine and its temporary storage until the complete cooling time according to the Cooling Time column causes negligible loading of the joint

		Welding Parameters							
Product Line & Material	Pipe Size	Initial Melt Pressure	Bead Height	Melt Pressure	Heatsoak Time	Changeover Time	Welding Pressure	Cooling Time	

Please visit the Asahi Weld App

at www.asahi-america.com for

up to date weld parameters

Welding Temperatures

PP: 393°F - 410°F (200°C - 210°C) PE: 420°F - 446°F (215°C - 230°C) PVDF: 436°F - 446°F (225°C - 230°C) ECTFE: 527°F - 536°F (275°C - 280°C)

- the joint connection was created under workshop conditions and
- the removal of the part from the welding machine and its temporary storage until the complete cooling time according to the Cooling Time column causes negligible loading of the joint

		We	lding P	arameters				NT AS OF 9/2024
Product Line & Material	Pipe Size	Initial Melt Pressure	Bead Height	Melt Pressure	Heatsoak Time	Changeover Time	Welding Pressure	Cooling Time

Please visit the Asahi Weld App

at www.asahi-america.com for

up to date weld parameters

Welding Temperatures

PP: 393°F - 410°F (200°C - 210°C)
PE: 420°F - 446°F (215°C - 230°C)
PVDF: 436°F - 446°F (225°C - 230°C)
ECTFE: 527°F - 536°F (275°C - 280°C)

- the joint connection was created under workshop conditions and
- the removal of the part from the welding machine and its temporary storage until the complete cooling time according to the Cooling Time column causes negligible loading of the joint

		Welding Parameters								
Product Line & Material	Pipe Size	Initial Melt Pressure	Bead Height	Melt Pressure	Heatsoak Time	Changeover Time	Welding Pressure	Cooling Time		

Please visit the Asahi Weld App

at www.asahi-america.com for

up to date weld parameters

Welding Temperatures

PP: 393°F - 410°F (200°C - 210°C) PE: 420°F - 446°F (215°C - 230°C) PVDF: 436°F - 446°F (225°C - 230°C) ECTFE: 527°F - 536°F (275°C - 280°C)

- the joint connection was created under workshop conditions and
- the removal of the part from the welding machine and its temporary storage until the complete cooling time according to the Cooling Time column causes negligible loading of the joint

		We	lding P	arameters			CURRENT AS OF 12/19/2024	
Product Line & Material	Pipe Size	Initial Melt Pressure	Bead Height	Melt Pressure	Heatsoak Time	Changeover Time	Welding Pressure	Cooling Time

Please visit the Asahi Weld App

at www.asahi-america.com for

up to date weld parameters

Welding Temperatures

PP: 393°F - 410°F (200°C - 210°C)
PE: 420°F - 446°F (215°C - 230°C)
PVDF: 436°F - 446°F (225°C - 230°C)
ECTFE: 527°F - 536°F (275°C - 280°C)

- the joint connection was created under workshop conditions and
- the removal of the part from the welding machine and its temporary storage until the complete cooling time according to the Cooling Time column causes negligible loading of the joint

		CURRENT AS OF 12/19/2024						
Product Line & Material	Pipe Size	Initial Melt Pressure	Bead Height	Melt Pressure	Heatsoak Time	Changeover Time	Welding Pressure	Cooling Time
					_			_

Please visit the Asahi Weld App

at www.asahi-america.com for

up to date weld parameters

Welding Temperatures

PP: 393°F - 410°F (200°C - 210°C) PE: 420°F - 446°F (215°C - 230°C) PVDF: 436°F - 446°F (225°C - 230°C) ECTFE: 527°F - 536°F (275°C - 280°C)

- the joint connection was created under workshop conditions and
- the removal of the part from the welding machine and its temporary storage until the complete cooling time according to the Cooling Time column causes negligible loading of the joint

	CURRENT AS OF 12/19/2024						
Pipe Size	Initial Melt Pressure	Bead Height	Melt Pressure	Heatsoak Time	Changeover Time	Welding Pressure	Cooling Time
		_					_
	Pipe Size	Initial Pipe Size Melt	Initial Bead Pipe Size Melt Height	Pipe Size Melt Bead Melt Pressure	Pipe Size Initial Bead Height Heatsoak Time	Pipe Size Initial Bead Heatsoak Height Height Height Heatsoak Time Time	Pipe Size Initial Bead Melt Bead Melt Pressure Time Time Pressure P

Welding Temperatures

PP: 393°F - 410°F (200°C - 210°C) PE: 420°F - 446°F (215°C - 230°C) PVDF: 436°F - 446°F (225°C - 230°C) ECTFE: 527°F - 536°F (275°C - 280°C) A reduction in the cooling time of up to 50%, i.e. removal of the welded part from the welding machine, is permitted in the following circumstances:

- the joint connection was created under workshop conditions and
- the removal of the part from the welding machine and its temporary storage until the complete cooling time according to the Cooling Time column causes negligible loading of the joint

Please visit the Asahi Weld App